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Coefficients of fractional parentage for the states of an 
arbitrary number of j = 1 bosons 
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Institute of Physics, P O  Bo:: 57, Beograd, Yugoslavia 

Received 9 July 1979, in final form 14 April 1980 

Abstract. The construction of symmetric states of N particles with angular momentum j = 1 
is presented. 

Elliott's result, dealing with the angular momentum content of the symmetric subset of 
states belonging to the set of states of N particles with angular momentum j = 1, is obtained 
using Racah algebra for the angular momentum coupling. The explicit functional depen- 
dence, on the total angular momentum, of the coefficients of fractional parentage (CFP) 
associated with one, two, three and four removed particles is found for arbitrary values of N. 
This dependence is expressed through the simple algebraic functions of J and N. 

1. Introduction 

One of the problems in group theory and its physical applications concerns the 
decomposition of the Kronecker product of N identical irreducible representations D''' 
of the group O'(3) into irreducible representations (IR) of SU(2j + 1) and IR of 0+(3). 
The particular case of this general problem consists in finding the multiplicities of IR of 
0+(3) in the IR of SU(2j + 1) (shortly, the angular momentum content of SU(2j + 1) 
irreducible representations). For solving this problem, Jahn (1950) suggested the 
recurrence method based on decomposition of the outer multiplications of IR of the 
permutation group S N .  An alternative approach, a simple graphical method, has 
recently been proposed by Mikhailov (1978). Recurrence relations obtained using 
combinatorial analysis, for the multiplicities of angular momenta in symmetric and 
antisymmetric IR of SU(2j i- I), are given by Buthner (1967). 

The angular momentum content of the symmetric IR of SU(3) has been found by 
Elliott (1958a,b), with the aid of Littlewood's rule, for any value of N"*b. 

In this paper, we derive the recursion relations for the coefficients of fractional 
parentage (CFP) in symmetric states of N spin j = 1 particles. Those states belong also to 
the IR of 0+(3). In this derivation we exploit the Racah algebra for the angular 
momentum coupling. The angular momentum content of the symmetric IR of SU(3) 
follows directly from the condition of the existence of the solutions of the homogeneous 
set of equations for the CFP coefficients (§ 2). 

Using certain properties of symmetric states, we found the explicit functional 
dependence of the CFP on J and N, for any N and for 0 J s N (i.e. we found the 
general solution of the recursion relations for CFP). We have also evaluated CFP for two, 
three and four particles in symmetric states. 
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2. The construction of symmetric states for N spin j = 1 particles 

As usual, let us denote by ljimi) the eigenstates of the operators]? and 2 associated with 
the ith particle. In order to study the symmetric IR of the SU(2j + 1) and O'(3) groups, 
we will construct the Racah basis in the symmetric subspace of the Kronecker product 
representation D"' x D") x , . . x Dil) .  Here the basic states are the eigenstates of the 
operators 

For N = 2 the symmetric IR of SU(2j  + I )  and O"(3) contain the eigenstates of f 2  

and .f* in which J = 2 -- 2k ( k  = 0, 1). This result follows directly from the properties of 
Clebsch-Gordan coefficients ( j l j z m l m z ~ J M )  under the alternation of jl and j 2 .  

For N > 2, each symmetric state of N angular momenta, I ( j N ) f N ;  JM),  can be 
written as a linear combination of products of symmetric states of ( N  - 1) angular 
momenta, JN-', M - m f ) ,  by the state ljNm') of the Nth  angular 
momentum: 

= (O"-l)JN-l, j ;  Jll(jN)J)IGN-')fN-1; JN-1, j N ;  JM)*  (2.2) 
JN-i  

The coefficients (( jN-l)JN-l, j ;  J/I( j N ) J )  are analogous to the similar coefficients in the 
expansion of the antisymmetric functions (Racah 1942a,b,c, 195 1, Kaplan 1975) and 
are called the coefficients of fractional parentage (CFP). 

We will introduce the shortened notation 

fN(jrN-1, J )  = ( ( j N - ' ) ~ N - i ,  i; JII (~")J) .  (2.3) 

The recursion relation for the CFP coefficients is obtainable by substituting into (2.2) 
the expansion of the symmetric states I( jN-l)fN-l, JN--1, j N ;  J M )  through the CFP 
fN-l(JN-2, JN-') ,  and by stating that the series obtained are independent of the choice of 
the removed angular momenta. This means that the states have the following property: 
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we obtain the following set of equations for the coefficients fN(JN-l ,J)  and 
fN- 1 (JN-2, JN - 1) : 

fN(JN-1, J)fN-l(JN-2, JN-1) 

= (-1)JN-l+J-JN-2-z/ c (-l)JN-lfN(JL-l, J)fN-l(JN-2, JL-1) 
JN-i 

x [(2JN-1+ 1)(2JL-l + 1 ) y  W(jJN-2Jj; J;v- 1JN-1) .  (2.6) 
The indexes JN-l and JN-2 in (2.6) take the values ( J -  1, J, J +  1) and 

For j = 1 and N = 3, one easily finds the solutions of equations (2.6): 

-- 

1, J N - 1 ,  J N - 1 +  l ) ,  respectively. 

f3(1, J )  = 0, 

f3(J2, 2) = 0, f3(J2, 0) = 0, f3(2,3) = 1, (2.7) 

f3(0, 3) = 0, 

This result shows that the angular momentum content of the symmetric IR of SU(3) in 
the case N = 3 is J = 1,3 .  

With the aid of the results given in (2.7) we find that for N = 4 the system of 
equations (2.6) has no solutions for J = 3 , l .  For J = 4, 2, 0 we find: 

J = 3,2,  1, 0, 

f3(0, 1) = &/3, f3(2, 1) = 2/3. 

f4(3,4) = 1, f4(2,4) = 0, f40,  4) = 0, f4(0,4) = 0, 

f4(3, 2) = J3/JG, 
f4(3,0) = 0 f4(2, 0 )  = 0 f4(1, o)= 1 f4(0, 0) = 0. 

those for which the total angular momentum, JM = J, takes the values 

f4(2, 2) = 0, f4( 1, 2) = J?/JZ, f4(0,2) = 0, (2.8) 

These results suggest that the symmetric states of M j  = 1 angular momenta are 

J = M - 2k, k = 0 , 1 , 2 , .  . . , [M/2]. (2.9) 
In order to prove this conjecture we will use the method of mathematical induction. 

Let us suppose that the conjecture and its consequences are true for M = (N - 1) 
angular momenta. Then we shall prove that from (2.6) it follows that this conjecture is 
true for M = N angular momenta, too. 

The supposition that (2.9) is valid for N - 1 angular momenta implies the assump- 
tion that 

fN-l(JN-2, JN-1) = 0 or JN-2 = N - 2 - (2k2 + l ) ,  if JN-1 = N - 1 - (2k1+ 1) 

N-1 kl=O, 1 , 2  ,... , k2=0 ,1 , .  . . , [ T I .  (2.10) 

Now, the set of equations (2.6) can be written explicitly 

f N  (J, J )  = 0 ,  

- fN(Jf  1, J)fN-I(J, J +  1)[(2J + 1)(2J + 3)]'/2w(1JJ1; J +  1, J) 
= f N ( J -  1, J)fN-l(J, J -  1)[(2J+ 1)(2J-  1)1 '~2w(1JJ1;  J -  1, J ) ,  

= f N  (J  + 1, J)fN- 1 (J, J + 1)[ (2J - 1)(2J + 3)11/2 W( 1JJ 1 ; J + 1, J - l),  

f N ( J -  1, J)fN-l(J, J -  1)[1-(2J - 1) W(lJJ1 ;  J -  1, J -  l)] 
(2.11) 
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~ N ( J +  1, J ) ~ N - I ( J ,  J +  1)[1-(2J + 3 ) W ( l J J l ;  J +  1, J +  l)] 

= f N ( J - - 1 ,  J ) f N - l ( J ,  J - i ) [ (2J+3)(2J- i ) ]1 /2W(iJJ i ;  J - 1 ,  J +  1). 

In the remaining equations each term equals zero, and therefore they are identically 

The set of equations (2.1 1) has non-trivial solutions if the following conditions are 
satisfied. 

fulfilled: 

1 - (2J+  3) W(J11J; J + 1, J + 1) (2J+3)'12 W(lJJ1;  J -  1, J +  1) 
( 2 . 1 2 ~ )  [(2.1+ 1)(2J+3)]'/2w(1JJ1; J +  1, J )  = - (2J  + 1 y  W(lJJ1;  J -  1, J )  ' 

1 - (2J -  l ) W ( l J J l ;  J -  1, J -  1) 
w ( 1JJ 1 ; J - 1, J )  

W(lJJ1;  J +  1, J -  1) 
W(lJJ1 ;  J +  1, J )  ' 

- = .- (2J  - 1) i-.li_ (2.12b) 

1 - ( 2 J - l ) W ( l , J - 2 , J ,  1 ; J -  1 , J - 1 )  =o ,  
(2J  + 3) W(1, J + 2, J, 1; J + 1, J + 1) = 1. 

(2.12c) 

(2 .124  

It is easy to check the validity of these conditions by writing the explicit algebraic 
expressions for Racah coefficients as functions of J (Brink and Satchler 1962). One 
notices that the relations (2.12a) and (2.12b) between Racah coefficients are not 
Racah-Elliott relations. 

The conditions (2.12) being fulfilled, the coefficients& can be determined using any 
equation from the set (2.1 1). From the first and the second equations in the set (2.11) 
one finds: 

(2.13) 

For J = N and J = 0 the coefficients f N  have the values 

J = N :  , ~ N ( N  + 1, N )  = 0 ,  f N ( N -  1, N ) =  1, 
J = O :  f N ( l , O ) =  l , fN(O,O)=O,forNeven,  (2.14) 

J = O :  f N ( 1 , O )  == 0 ,  f N ( 0 ,  0 )  = 0 ,  for N odd. 

Combining (2.10) with (2.13) we find: 

f"JN-1, J N )  = 0 (2.15) 

In this way we have shown that if the conjecture (2.9) is true for M = N - 1 angular 
momenta, it is true for M -  N angular momenta, too. This is the result obtained 
previously by Elliott (1958) with the aid of Littlewood's rule. 

The relations (2.13) allow the determination of the coefficients f N ( J N - l ,  J )  if the 
coefficients f N - l ( J N - 2 ,  JN-1) are known. 

The dimension of the symmetric irreducible representation belonging to the 
Kronecker product of N irreducible representations D"' equals (NG2). The number of 
limarly independent symmetric states constructed above is 

if JN = N -- ( 2 k l +  l), JN- I  = N - 1 -- (2k2 + 1). 

[N/21 N2+3N + 2  
[2(N - 2k) + t] = --I_ 

k = O  2 .  

This means that the constructed set of symmetric state covers the whole symmetric 
subspace. 
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3. The elevation of algebraic expressions for fractional parentage coefficients 
associated with one, two, three and four removed particles of angular momentum 
j = l  

If N is very large, a lengthy procedure has to be accomplished in order to evaluate the 
coefficientsfN(JN-l, J )  from the recursion relation (2.13). But, due to the fact that for a 
given J and N there are only two unknown coefficientsfN(J - 1, J), ~ N ( J  + 1, J ) ,  it turns 
out that it is possible to determine algebraic expressions for those coefficients by using 
the following property of symmetric states: 

By expressing the left- and right-hand sides of (3.1) through the coefficientsfN(J - 1, J) 
and f N ( J  + 1, J) and using the algebraic expressions for tb,e CG coefficients, one finds 

fiu- 1, J) - f & ( J +  1, J) J + 2  
M ( J  J + l  J 

and consequently 

f ; (J+l ,J)  J+1 N-J  =- 
f $ ( J - l , J )  J N + J + 1 '  

With the aid of the condition of normality one obtains 

(3.3) 

It is easy to see that the functions (3.4) satisfy the recursive relation (2.13). 

series 
Now, one can evaluate the coefficients ((jN-r)JN-r(jr)Jr; Jll(j")J),  for any r in the 

I(i")fN; JW = C ((iN-')JN-n ( j r ) J r ;  JII(iN)J)I(iN-')JN-r, f N - r ;  ( j r ) J r ,  f r ;  JM).  
JN-JV 

(3.5) 

In order to accomplish this task for r = 2, it is necessary to write twice the series (2.2). 
Then one finds 



2886 Z MariC and M PopouiC-Bo% 

Similarly, for r = 3 and r = 4 one evaluates 

From (3.4), (3.6), (3.7) and (3.8) one finds the expressions for the coefficients 
( ( j N P r ) J N p r ,  ( j r ) J r ;  JIl(i")J), r = 2, 3, 4, listed in the appendix. 
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Appendix 

(N +J+ l ) (N+J  - 1 )  
( N ( N  - 1 )  

~ N ( J - 2 ,  2, J ) =  

(J  + 1)(J + 2) 
(2J + 1)(2J + 3) 

( N  - J ) ( N  - J  - 2) 
( N ( N - 1 )  

b N ( J + 2 , 2 , J ) =  

(2J - 1)(2J + 3) 

(J + 1)(J + 2)(J + 3) 
(2J - 1)(2J + 1)(2J +3) 

(N - J ) ( N  - J  - 2)(N - J  - 4) 

(2J - 1)(2J + 1)(2J + 5 )  

( N  - J ) ( N  - J - 2)(N + J + 1 ) ) 1 / Z (  2JJ"+11> 
d N ( J + 1 ,  1 , J ) =  

(N  + J  + l ) ( N + J  - l ) ( N - J )  
)1'2( 

J ( J  + 1)(J - 1 )  
d,v(J - l ,3 , J )=  (2J + 1)(2J - 3)(2J + 3) 
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(h’ + J  + 1)(N +J - 1 ) ( N  + J  - 3 )  
) ‘ / 2 (  

J ( J  - 1)(J - 2)  
( 2 J -  1)(2J + 1)(2J - 3 )  

d d J - - 3 , 3 , J ) =  ( N ( N - l ) ( N - 2 )  

( J  + 1)(J + 2)(J  + 3)(J + 4) 
x ( ( 2 J + l ) ( 2 J + 3 ) ( 2 J + 5 ) ( 2 J + 7 )  

( N  - J ) ( N - J  - 2 ) ( N  +J - 1 ) ( N  -J - 4 )  - 
N ( N  - 1)(N - 2 ) ( N  - 3) 

J ( J  + 1)(J + 2)(J -c 3 )  
( ( 2 J  + 1)(2J - 1)(2J +7)(2J + 3 )  

2 x 3 ‘ I 2  ( N  - J ) (N  -J - 2 ) ( N  -J - 4 ) ( N  +J + 1) 
= (7) ( N ( N  - 1)(N - 2 ) ( N  - 3) 

( J  + 1)(J + 2 )  
(2J + 1)(2J + 3 )  

3 J2 ( N  - J ) ( N  - J - 2 )  (N + J + 1)  (N + J - 1)  ‘ I 2  ) - - 
( 5  x 7)l l2(  N ( N  - 1)(N - 2 ) ( N  - 3) 

J ( J  + 1)(J  - 1)(J + 2 )  l I 2  

( ( 2 J  - 1)(2J + 3)(2J - 3)(2J + 5 )  ) 
2 ( N - J ) ( N - J - 2 ) ( N + J + l ) ( N + J - l )  

eN(J, 2 ,  J) = - 
J7 ( N ( N  - 1 ) ( N  - 2 ) ( N  - 3 )  

1 
J5 ( 

(N - J) (N  - J - 2 ) ( N  + J +  1)(N +J - 1) 
eN (J, 0, J )  = Y 

N ( N  - 1 ) ( N  - 2 ) ( N  - 3 )  

( N  - J ) ( N + J -  1)(N + J  - 3 ) ( N + J  + 1 )  

J? N ( N  - 1)lN - 2 ) ( N  - 3 )  

J ( J  - 1)(J  + 1)(J - 2 )  
( ( 2 J  + 1)(2J - 1)(2J + 3)(2J - 5 )  
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e N ( J  - 2 , 2 ,  J )  

- - ( N  - J ) ( N  + J  + 1)(N + J  - 1)(N 
‘2  :?I2( N ( N  - l)(N - 2 ) ( N  - 3 )  

( A r + J + 1 ) ( N + J - 1 ) ( N + J - 3 ) ( N + J - 5 )  - =i N ( N  - 1)(N - 2 ) ( N  - 3 )  

J ( J  - 1)(J - 2) (J  - 3 )  
(A.3) 

For all other values of JN-, and J, the coefficients ( ( J N - r ) J ~ - r ,  ( j r ) J r ;  Jll(j”)J) are 
identically zero. 
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